Question: How do algebraic sets (/fields of rat'l functions/local ring) in $U_{n+1} = /A^m$ relate to those in the IP^m it sits inside?

$$A^{n}$$
 to \mathbb{P}^{n} : Let $V \subseteq A^{m}$ ke an algebraic set $w/$
 $I = I(V) \subseteq k[x_{1,3,\dots,3}x_{n}].$

Let $J \subseteq k[x_{1,3}, x_{n+1}]$ be the ideal generated by the homogenization of elements of I (check: J is still radical)

Thus, J is homogeneous, and define $\nabla := V_p(J) \subseteq \mathbb{P}^{n}$

 $Check: \overline{V} \cap U_{n+1} = V$

Caution: In general, it is <u>not</u> true that if $I = (f_1, ..., f_r)$ then $J = (F_{1,...}, F_r)$ where $F_i = homog. of f_i$.

Ex:
$$I = (x^2+y, x)$$
. Then $y \in I$, so $y \in J = homog.$ of I ,
but $y \notin (x^2+yz, x) = J'$.
Geometrically: $V_{\alpha}(I) = \{(o, o)\}, V_{\beta}(J) = \{[0:0:1]\}$

but $V_p(J) = \{ [0:0:1], [0:1:0] \}$, i.e. we get an extra point in this case if we just homogenize generators.

EX: Recall
$$I = (x^2 - y, z - xy) \subseteq C[x, y, z]$$
. We showed on a past HW that $V_a(I) = \{(t, t^2, t^3)\} \subseteq A^3$.

This is called the twisted <u>cubic</u>.

Let J be the homogenization of I in
$$k(x, y, z, w)$$
.
Define J' to be $J' = (x^2 - yw, zw - xy)$

Clearly,
$$V_{p}(J') \cap U_{4} = V_{a}(I)$$
.

But if W=0 in $V_p(J')$, then $\gamma=0$, and γ and $\overline{\gamma}$ can be arbitrary, so

$$V_{p}(J') = V_{p}(J) \cup V_{p}(x,w), \text{ which is reducible, since}$$

$$[0:1:0:0] \in V_{p}(x,y) \text{ but } Z X - y^{2} \in I \Longrightarrow Z X - y^{2} \in J \text{ which doesh}^{t}$$

$$vomish \ at \ [0:1:0:0].$$

$$V(X,W)$$

$$(line in Ho)$$

$$(line in Ho)$$

$$\left(\frac{Q: ln how mong \ points}{does \ V(x,w) \ intersect}\right)$$

$$does \ V(x,w) \text{ intersect}}$$

$$Twisted \ cubic?$$

(Interesting note: We can't actually define the twisted

cubic in \mathbb{P}^3 using only two equations. That is, the twisted cubic is not what's called a <u>complete intersection</u>. i.e. it can't be defined by # of equations equal to its codimension. One way to see this is that it has degree 3, whereas the intersection of two quadrics (deg 2 hypersurfaces) has degree 4-hence the additional line. Thus, you need an additional quadric to cut out the twisted cubic. - See [HW]

Ph to An

$$V \subseteq \mathbb{P}^{h}$$
 an algebraic set, $T = T_{p}(v) \subseteq k[x_{1}, ..., x_{n+1}]$

Then intersecting with U_{n+1} corresponds to dehemogenizing, i.e. taking $\frac{I}{(x_{n+1}-1)} \subseteq k[x_{1},...,x_{n+1}]/(x_{n+1}^{-1}) \cong k[x_{1},...,x_{n+1}]$

Note: If we think of I as the ideal of the cone C(V), then the quotient $k(x_{1,...,x_{n+1}}] \rightarrow k(x_{1,...,x_{n+1}})/(x_{n+1}-1)$ were sponds to the inclusion $U_{n+1} \longrightarrow A^{n+1}$ $V_{(x_{n+1}-1)}^{n}$

Then \overline{T} is the image of T in the quotient, so $V(\overline{T})=C(V) \cap U_{n+1}$ = $V \cap U_{n+1}$

Fields of rational functions

closure. We can define a map $d: k(W) \longrightarrow k(V)$ by $d(\frac{F}{G}) = \frac{F(x_{1},...,x_{n},1)}{G(x_{1},...,x_{n},1)}$ quotients field of of forms of fractions of The same deg $\Gamma(V)$

(subtlety: can you see why this is well-defined?)

Prop: & is an isomorphism.

$$\frac{Pf}{b} = k(V). \quad \text{let A and B be the homog. of a, b resp.}$$

and $q = degb - dega.$ Then $\frac{A}{B} \times_{n+1}^{q} \mapsto \frac{a}{b}$. Thus, $a \mid s \mid a$
maybe < 0

surjection of fields and thus an isomorphism. D

Cor: If
$$P \in V$$
, a induces an isom $\mathcal{O}_p(W) \to \mathcal{O}_p(V)$.

$$\underline{Pf}: q(\mathcal{O}_p(W)) \subseteq \mathcal{O}_p(V) \text{ since } F \text{ defined at } P \rightarrow F(x_1, \dots, x_n, I) \text{ is.}$$

The map is injective since a is.

If
$$\frac{a}{b} \in \mathcal{O}_p(V)$$
, then the homogenization of b will be nonzero
at P as well, so the map is surjective. \Box

we choose <u>Remark</u>: If P&Un+1, we can choose a different Ui s.t. PeUi, and dehomogenize w.v.t. x;.